Friday, June 30, 2017

SUNSET Taken by IVAN KORDAČ on May 29, 2017 @ Kosmonosy, CZECH REPUBLIC






As you wait for solstice by Stonehenge, couple weeks before and after that you can see as miracle when cloudless horizon helps you...

NGC 7814: THE LITTLE SOMBRERO IN PEGASUS Image Credit & Copyright: CHART32 Team, Processing - Johannes Schedler


Point your telescope toward the high flying constellation Pegasus and you can find this expanse of Milky Way stars and distant galaxies. Dominated by NGC 7814, the pretty field of view would almost be covered by a full moon. NGC 7814 is sometimes called the Little Sombrero for its resemblance to the brighter more famous M104, the Sombrero Galaxy. Both Sombrero and Little Sombrero are spiral galaxies seen edge-on, and both have extensive halos and central bulges cut by a thin disk with thinner dust lanes in silhouette. In fact, NGC 7814 is some 40 million light-years away and an estimated 60,000 light-years across. That actually makes the Little Sombrero about the same physical size as its better known namesake, appearing smaller and fainter only because it is farther away. Very faint dwarf galaxies, potentially a satellites of NGC 7814, have been discovered in deep exposures of Little Sombrero.

SMALL WONDERS



Montage of views from NASA's Cassini spacecraft shows three of Saturn's small ring moons: Atlas, Daphnis and Pan 



This montage of views from NASA's Cassini spacecraft shows three of Saturn's small ring moons: Atlas, Daphnis and Pan at the same scale for ease of comparison.

Two differences between Atlas and Pan are obvious in this montage. Pan's equatorial band is much thinner and more sharply defined, and the central mass of Atlas (the part underneath the smooth equatorial band) appears to be smaller than that of Pan.

Images of Atlas and Pan taken using infrared, green and ultraviolet spectral filters were combined to create enhanced-color views, which highlight subtle color differences across the moons' surfaces at wavelengths not visible to human eyes. (The Daphnis image was colored using the same green filter image for all three color channels, adjusted to have a realistic appearance next to the other two moons.)

A version of the montage using only monochrome images is also provided here.

All of these images were taken using the Cassini spacecraft narrow-angle camera. The images of Atlas were acquired on April 12, 2017, at a distance of 10,000 miles (16,000 kilometers) and at a sun-moon-spacecraft angle (or phase angle) of 37 degrees. The images of Pan were taken on March 7, 2017, at a distance of 16,000 miles (26,000 kilometers) and a phase angle of 21 degrees. The Daphnis image was obtained on Jan. 16, 2017, at a distance of 17,000 miles (28,000 kilometers) and at a phase angle of 71 degrees. All images are oriented so that north is up.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini. The Cassini imaging team homepage is at http://ciclops.org.


Image Credit: NASA/JPL-Caltech/Space Science Institute


MOON AND REGULUS CONJUNCTION Taken by Marion Haligowski on June 27, 2017 @ Lancaster, PA, USA



The waxing crescent moon was seen about a degree away from Regulus on the evening of June 27, 2017.


LIGHTNING Taken by Tamás Kelemen on June 25, 2017 @ Szeged, Hungary



Lightning struck a tower just about 200m from me.
Setup: Canon 1300D, 18mm, f/13, 10sec, ISO100, and a huge storm


COMPOSITE MESSIER 20 AND 21 Image Credit & Copyright: Martin Pugh



The beautiful Trifid Nebula, also known as Messier 20, lies about 5,000 light-years away, a colorful study in cosmic contrasts. It shares this nearly 1 degree wide field with open star cluster Messier 21 (top left). Trisected by dust lanes the Trifid itself is about 40 light-years across and a mere 300,000 years old. That makes it one of the youngest star forming regions in our sky, with newborn and embryonic stars embedded in its natal dust and gas clouds. Estimates of the distance to open star cluster M21 are similar to M20's, but though they share this gorgeous telescopic skyscape there is no apparent connection between the two. M21's stars are much older, about 8 million years old. M20 and M21 are easy to find with even a small telescope in the nebula rich constellation Sagittarius. In fact, this well-composed scene is a composite from two different telescopes. Using narrowband data it blends a high resolution image of M20 with a wider field image extending to M21.


CREPUSCULAR RAYS Taken by Michael Karrer on June 25, 2017 @ Airport of Graz



Leaving the plaine at the airport of Graz impressive Angel Lights were greeting the passangers. The sky was completely overcast except the small area in the west. Snapshot with a Samsung Galaxy S4.


THE IMPOSSIBLE PHOTO IS POSSIBLE Taken by Marcella Giulia Pace on June 8, 2017 @ Randello (Ragusa - Sicily) -Italy





A unusual picture I took at sunset with the aid of a special mirror (with effect “Pepper’s ghost” https://en.wikipedia.org/wiki/Pepper%27s_ghost) , which filtered the Sun light and at the same time reflected the Moon behind me.


In this way I was able to catch the Sun and the Moon at the horizon at the same time and with a single click.

ZEISS MILVUS 1.4/35





The new ZEISS Milvus 1.4/35 for DSLR cameras is the tenth lens in the ZEISS Milvus family and it showcases its many benefits even at full aperture – meaning it’s perfectly in portrait and landscape photography.


 .. UN SUEÑO ! ..





NASA COMPLETES STUDY OF FUTURE ‘ICE GIANT’ MISSION CONCEPTS

A NASA-led and NASA-sponsored study of potential future missions to the mysterious “ice giant” planets Uranus and Neptune has been released—the first in a series of mission studies NASA will conduct in support of the next Planetary Science Decadal Survey. The results of this and future studies will be used as the Decadal Survey deliberates on NASA’s planetary science priorities from 2022-2032. The study identifies the scientific questions an ice giant mission should address, and discusses various instruments, spacecraft, flight-paths and technologies that could be used.




Left: Arriving at Uranus in 1986, Voyager 2 observed a bluish orb with subtle features. A haze layer hid most of the planet's cloud features from view. Right: This image of Neptune was produced from Voyager 2 and shows the Great Dark Spot and its companion bright smudge.
Credits: Left: NASA/JPL-Caltech - Right: NASA



"This study argues the importance of exploring at least one of these planets and its entire environment, which includes surprisingly dynamic icy moons, rings, and bizarre magnetic fields," said Mark Hofstadter of NASA's Jet Propulsion Laboratory in Pasadena, California, one of the two co-chairs of the science team that produced the report. The European Space Agency (ESA) also participated in the study.

To date, Uranus and Neptune have been visited briefly by one spacecraft, Voyager 2.  Voyager rapidly flew by Uranus in 1986 and Neptune in 1989, as part of its grand tour of discovery that previously took it by Jupiter and Saturn.

Said co-chair Amy Simon of NASA's Goddard Space Flight Center in Greenbelt, Maryland, "We do not know how these planets formed and why they and their moons look the way they do. There are fundamental clues as to how our solar system formed and evolved that can only be found by a detailed study of one, or preferably both, of these planets."

A variety of potential mission concepts are discussed in the study, including orbiters, flybys, and probes that would dive into Uranus’ atmosphere to study its composition. A narrow-angle camera would send data back to Earth about the ice giants and their moons. Uranus has 27 known moons, while Neptune has 14.

Collectively, Uranus and Neptune are referred to as ice giant planets. In spite of that name, relatively little solid ice is thought to be in them today, but it is believed there is a massive liquid ocean beneath their clouds, which accounts for about two-thirds of their total mass. This makes them fundamentally different from the gas giant planets, Jupiter and Saturn (which are approximately 85 percent gas by mass), and terrestrial planets like Earth or Mars, which are basically 100 percent rock. It’s not clear how or where ice giant planets form, why their magnetic fields are strangely oriented, and what drives geologic activity on some of their moons. These mysteries make them scientifically important, and this importance is enhanced by the discovery that many planets around other stars appear to be similar to our own ice giants.




Illustration of compositional differences among the giant planets and their relative sizes. Earth is shown for comparison. Jupiter and Saturn are primarily made of hydrogen and helium, the terrestrial planets are almost pure rock, while Uranus and Neptune are thought to be largely supercritical liquid water.


Credits: JPL/Caltech, based on material from the Lunar and Planetary Institute
It is now up to the next decadal survey to recommend science priorities for NASA for the next decade. NASA will then determine if and when to fly a mission that is responsive to those priorities.



The full study (529 pages), as well as a short summary are available at:





SATURNIAN DAWN



NASA's Cassini spacecraft peers toward a sliver of Saturn's sunlit atmosphere while the icy rings stretch across the foreground as a dark band.

This view looks toward the unilluminated side of the rings from about 7 degrees below the ring plane. The image was taken in green light with the Cassini spacecraft wide-angle camera on March 31, 2017.

The view was obtained at a distance of approximately 620,000 miles (1 million kilometers) from Saturn. Image scale is 38 miles (61 kilometers) per pixel.


The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini. The Cassini imaging team homepage is at http://ciclops.org.


Credit: NASA/JPL-Caltech/Space Science Institute

COILS OF MAGNETIC FIELD LINES



A smallish solar filament looks like it collapsed into the sun and set off a minor eruption that hurled plasma into space (June 20, 2017). Then, the disrupted magnetic field immediately began to reorganize itself, hence the bright series of spirals coiling up over that area. The magnetic field lines are made visible in extreme ultraviolet light as charged particles spin along them. Also of interest are the darker, cooler strands of plasma being pulled and twisted at the edge of the sun just below the active region. The activity here is in a 21-hour period.

Credit: Solar Dynamics Observatory, NASA.



THE M81 GALAXY GROUP THROUGH THE INTEGRATED FLUX NEBULA Image Credit & Copyright : D. Lopez & A. Rosenberg, IAC



Distant galaxies and nearby nebulas highlight this deep image of the M81 Group of galaxies. First and foremost in this 80-exposure mosaic is the grand design spiral galaxy M81, the largest galaxy in the image, visible on the lower right. M81 is gravitationally interacting with M82 just above it, a large galaxy with an unusual halo of filamentary red-glowing gas. Around the image many other galaxies from the M81 Group of galaxies can be seen, as well as many foreground Milky Way stars. This whole galaxy menagerie is seen through the glow of an Integrated Flux Nebula (IFN), a vast and complex screen of diffuse gas and dust also in our Milky Way Galaxy. Details of the red and yellow IFN, digitally enhanced, were imaged by a new wide-field camera recently installed at the Teide Observatory in the Canary Islands of Spain.


" CLOUDY MOON " //// FOTOS: ESMERALDA SOSA


.. yupiii !.. se viene la tormenta.. 8 grados menos de los 22 actuales de temperatura..

.. Y LO MEJOR SERA LA NOCHE DIÁFANA A CONTINUACIÓN! ..